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Abstract 

Background:  Autism spectrum disorders (ASDs) have been increasing in many parts of the 

world and a portion of cases are attributable to environmental exposures. So far, conclusive 

replicated findings have yet to appear on any specific exposure, but mounting evidence suggests 

gestational pesticides exposures are strong candidates. Because multiple developmental 

processes are implicated in ASDs during gestation and early life, biological plausibility is more 

likely if these agents can be shown to affect core pathophysiological features. Here we review 

shared mechanisms between autism pathophysiology and effects of pesticide exposures, focusing 

on neuroexcitability, oxidative stress, and immune functions.  

Objectives: The objectives of this review are to outline the biological correlates between 

pesticide exposure and autism risk.  

Methods: We review and discuss previous research related to autism risk, developmental effects 

of early pesticide exposure, and basic biological mechanisms by which pesticides may induce or 

exacerbate pathophysiological features of autism.  

Discussion: Based on experimental and observational research, certain pesticides may be 

capable of inducing core features of autism but little is known about the timing, dose, or which 

of various mechanisms is sufficient to induce this condition.  

Conclusions: In animal studies, we encourage more research on gene X environment 

interactions, as well as experimental exposure to mixtures of compounds. Similarly, 

epidemiologic studies in humans with exceptionally high exposures can identify which pesticide 

classes are of greatest concern, and studies focused on gene X environment are needed to 

determine if there are susceptible sub-populations at greater risk from pesticide exposures.  
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Introduction 

Causes for the recent rise in autism diagnosis throughout the US remain largely unknown. In 

California, a 600% increased incidence in autism was observed among children up to age five for 

births from 1990 to 2001, yet only one third of the rise could be explained by identified factors 

such as changing diagnostic criteria and younger age at diagnosis (Hertz-Picciotto and Delwiche 

2009).  Across the U.S., autism spectrum disorders (ASD) are now estimated to affect 1 in 88 

eight year olds, with much higher prevalence in boys (1 in 54) than girls (1 in 252) (Centers for 

Disease Control and Prevention 2012). Autism is a heterogeneous, behaviorally defined 

condition presenting prior to age three. Although each individual diagnosis must meet specific 

criteria related to deficits in social interaction, and language, and the presence of repetitive 

behaviors or restricted interests, autism phenotypes vary widely, even among concordant twins 

(Le Couteur et al. 1996).  

 

Idiopathic autisms are diagnosed 4-5 times more often in boys than girls and frequently involve a 

wide range of genes that confer susceptibility as opposed to a singular heritable factor 

(Geschwind 2011). Genetic contributions to autism risks involve rare mutations, complex gene-

gene interactions and copy number variants (CNVs), including deletions and duplications 

(Stankiewicz and Lupski 2010). In a recent series of papers, rare de novo point mutations were 

associated with autism in parent-child trios with sporadic ASD (Neale et al. 2012; O’Roak et al. 

2012; Sanders et al. 2012), and those mutations were more frequently derived from fathers, 

increasing with paternal age (O’Roak et al. 2012). Twin studies have demonstrated evidence of 

heritability due to stronger concordance among monozygotic that dizygotic twins, yet in a recent 

study that parsed the contribution from genetics versus the environment, a larger component of 
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the risk of autism was attributable to environmental factors than genetics alone (Hallmayer et al. 

2011). The genetic and twin studies of autism point to variability unexplained by heritable 

factors, and in recent years, associations between gestational pesticide exposures and ASD or 

behaviors that are characteristic of pervasive developmental disorders have been reported. 

 

Using exposure estimates from a historical pesticide use database, a study of mothers living in 

the California central valley showed that children born to mothers exposed to agriculturally 

applied organochlorine (OC) insecticides within 500 meters of the home between days 26 and 81 

post-fertilization (during neural tube closure) were 7.6 times more likely to be diagnosed with 

ASD than the children of mothers who lived in the lowest exposure quartile. Associations were 

also observed for the pyrethroid insecticide bifenthrin and for the organophosphate chemical 

class, comparing the cumulative exposure over the course of gestation among the highest vs. 

lowest quartile (Roberts et al. 2007).  Although this study presents provocative preliminary data 

and higher odds at closer proximity (dose-response), unmeasured confounding could have 

occurred for other exposures such as prenatal vitamin intake or occupational exposures. 

Additionally, because cases were obtained from the Department of Developmental Services 

(DDS) and controls from the birth certificate registry, misclassification of cases and controls may 

have occurred as children who receive an early diagnosis of autism are sometimes reclassified at 

a later date, and controls may include children who are on spectrum but have not obtained a DDS 

diagnosis.  

 

In a prospective cohort study also from the California central valley, a 230% increase in 

maternally reported symptoms of Pervasive Developmental Disorders (PDD)  was observed per 
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10 nanomole/liter increase in prenatal maternal urinary levels of OP metabolites (Eskenazi et al. 

2007). PDD is the greater diagnostic umbrella under which ASD falls, and includes Rett 

Syndrome, Childhood Disintegrative Disorder (CDD), and Pervasive Developmental Disorder-

Not Otherwise Specified (PDD-NOS). Although the prospective study design has the benefit of 

accuracy in exposure ascertainment from biospecimens collected during pregnancy, it is 

generally not feasible to obtain a cohort large enough to observe enough cases of full syndrome 

autism. Consequently the broader definition of borderline PDD increases the numbers but lacks 

specificity. Although these studies are by no means conclusive in establishing an autism and 

pesticide association, they do raise important questions regarding the health effects of these 

compounds on the developing fetus.  In light of these findings and current theories of autism 

pathophysiology, we review here potential pathways by which gestational pesticide exposure 

might contribute to autism, linking what is known about the origins of autism with information 

on biological effects of pesticides to generate clearer hypotheses that can help guide future 

research in this area. 

 

Pesticide exposure in the general population 

Pregnant women are exposed to pesticides through a wide variety of sources, and while many of 

the mechanisms of action outlined here have been observed in association with higher exposures 

than are likely to occur in the general population, it is difficult to estimate the direct dosage to a 

pregnant woman who may be applying pesticides in or around her home or to her pets, 

consuming food with residues of pesticides and pesticide metabolites, and inhaling air from 

agricultural or urban spraying nearby her home and workplace. Moreover, urine and blood levels 

indicate exposure to pregnant women is widespread. In the 2003-2004 NHANES, which recruits 
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a representative sample of the U.S. adult population, 83% of pregnant women had detectable 

levels of dimethylthiophosphate, an OP metabolite in their urine (geometric mean 2.43 

micrograms/ Liter of urine). DDE, the breakdown product of the persistent OC pesticide DDT, 

was detected in 100% of pregnant women with a GM of 140.4 nanogram/gram lipid (Woodruff 

et al. 2011). Trends in pesticide use in the United States since 1964 have shown steep increases 

in OP use which make up the vast majority of sales, and rapid decreases in OC use following the 

1972 ban on DDT (Figure 1).  More recently, as OP’s have been banned for residential uses, 

pyrethroid sales have increased rapidly (Williams et al. 2008). 

 

The quest for animals models of autism & environment 

A variety of animal models have been developed that aid in the understanding of mechanisms 

that may induce one or several of the core features of autism (Ey et al. 2011; Hamilton et al. 

2011; Tabuchi et al. 2007). In particular, transgenic and knock-in mouse lines with targeted 

anomalies in genes associated with autism and the development of a comprehensive set of rodent 

assays to assess social interaction, communication, and repetitive behaviors, have greatly 

enhanced our ability to test hypotheses about the causes of autism (Silverman et al. 2010). 

However, implementations of these tools towards understanding gene X environment 

interactions that promote impairments in the three key behavioral domains have lagged. The 

Shank3
 
(Peca et al. 2011) and oxytocin knockout mice (Crawley et al. 2007) are examples of 

monogenetic insults that disrupt all three domains. However, because only a small proportion of 

autism cases result from complete loss of a single gene, knockout animal models may not be as 

useful as models that carry mutations which impart partial gain or loss of gene function.  
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Functional impairments as seen in the Reeler Mouse (RM) (Laviola et al. 2009) and Timothy 

syndrome (TS) mouse models (Bader et al. 2011) are more relevant to the multi-gene and 

environment model of autism risk. In a subsection of a paper describing the paradoxical effects 

of acetylcholinesterase in the Reeler mouse, Laviola and colleagues describe the complexity of a 

gene X environment model whereupon exposure to chlorpyrifos restored behaviors to near 

normal that were initially impaired in the homozygous RM, and partially impaired in the 

heterozygous RM (Laviola et al. 2006).  It was shown that deficient cholinergic transmission in 

RM mice could be restored by chlorpyrifos-mediated acetylcholinesterase inhibition. In 

subsequent studies, it was found that perinatal estradiol levels influence the number of Purkinje 

cells, and were regulated by reelin levels (Biamonte et al. 2009; Sigala et al. 2007).  This sex by 

gene by environment interaction model serves more readily as a clue for further epidemiologic 

follow-up to understand autism etiology in humans (Halladay et al. 2009).   

 

Several autism associated genes are involved in Ca
2+ 

signaling and regulation (Halladay et al. 

2009; Pessah and Lein 2008). The TS mouse model of autism involves a single nucleotide 

mutation essential for proper voltage dependent inactivation of the pore-forming subunit of the 

L-type calcium channel Cav1.2 (Splawski et al. 2004). Cav1.2 has been proposed to play direct 

roles in the development of synaptic plasticity (Morgan and Teyler 1999) and in gene translation 

and transcription (Dolmetsch 2003; Lenz and Avruch 2005; West et al. 2002).  

 

Ca
2+

 signaling can be disrupted by polychlorinated biphenyls (PCBs) (Pessah et al. 2010), the 

organochlorine pesticides lindane and dieldrin (Heusinkveld and Westerink 2012), and several 

types of pyrethroid pesticides (Soderlund 2012). In a study comparing physiological effects of 
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eleven pyrethroid compounds in rats, the type II pyrethroids strongly induced increased Ca
2+

 

channel influx into the cell, whereas the type I pyrethroids did not (Breckenridge et al. 2009). It 

should be noted that these three exposure types induced calcium perturbations at levels below 

those described as having a toxic effect based on primary mechanisms of action. 

 

One could argue that mouse, rat, or zebrafish models may not demonstrate the core deficit that 

sets autism apart from other developmental disorders, a lack of social reciprocity. Recently, the 

prairie vole has been cited as a better model of autism due to their high degree of socialized 

behavior. For example, male prairie voles demonstrated social withdrawal after 10-days of 

dietary exposure to mercury, indicating a sex-specific effect of the exposure which induced a 

unique attribute of autism, social avoidance (Curtis et al. 2010). 

 

Excitation/ Inhibition dysregulation of neuronal development 

Rubenstein and Merzenich elegantly describe a model of autism whereby the cortical networks 

that govern language and social behavior are skewed towards increased excitation or away from 

inhibition resulting in an overall hyper-excitable state. Their hypothesis addresses both genomic 

and environmental factors influencing glutamate and GABA mediated neurotransmission, 

resulting in more noise in neural networks (Rubenstein and Merzenich 2003).  

 

By poundage applied, the majority of pesticides inhibit acetylcholinesterase (AChE), the enzyme 

responsible for hydrolyzing the neurotransmitter acetylcholine (ACh). Examples include two of 

the most frequently used pesticides worldwide, organophosphates chlorpyrifos and diazinon, as 

well as the monomethyl carbamates (CB) including propoxur and methomyl.  Insecticides that 
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target voltage-gated sodium channels (e.g., pyrethroids and DDT), the nicotinic ACh receptors 

themselves (e.g., imidacloprid), and GABAA receptors [e.g., organochlorines (OC), and fipronil] 

are ranked next highest in use in overall pounds applied (Casida 2009).  The levels of ACh and 

GABA mediated neurotransmission and the activity of voltage dependent sodium channels are 

critical throughout prenatal and postnatal development, defining the ratio of excitatory and 

inhibitory neurotransmission in the brain, but also promoting and refining neural networks in the 

developing and adult brain (Belmonte and Bourgeron 2006). 

 

GABA signaling pathways 

GABA (gamma-Aminobutyric acid) is critical for normal development and regulation of 

neurotransmission (Campbell 1996). GABA activates two major families of receptors expressed 

in the mammalian brain: (1) GABAA and GABAC receptors that promote chloride fluxes and (2) 

GABAB receptors that are coupled to G-protein signaling. In adults, GABAA receptor activation 

promotes chloride influx and hyperpolarization of the membrane and decreases neuronal 

excitability.  However, during fetal development, the chloride gradients across the membrane are 

reversed and therefore activation of GABAA receptors in the hippocampus and neocortex causes 

net chloride efflux and enhanced excitation (Watanabe et al. 2002). Thus, the temporal 

expression and spatial localization of GABA receptors within the brain can determine the 

patterns and activity of neural circuits.  Numerous subunit isoforms for the GABAA receptor are 

developmentally regulated during the perinatal period and have distinct biophysical and 

pharmacological properties that contribute to their physiological (Cossart et al. 2005) and 

pathophysiological (Stafstrom CE 2010) functions. GABA is known to regulate many aspects of 

neural stem cell proliferation, differentiation, migration, and elongation (Varju et al. 2001). Due 
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to observed deficits in social and exploratory behavior, the GABAA receptor β3-gene deficient 

mouse has been suggested as an animal model of autism spectrum disorder (DeLorey et al. 

2008).  

 

Disruptions in the GABA system have been reported to be associated with autism in studies of 

receptor density from brain tissue (Blatt et al. 2001) as well as genetic association studies 

(Buxbaum et al. 2002; Cook et al. 1998; McCauley et al. 2004). In postmortem cerebellar tissue 

samples from brains of adults with autism, GABAA receptors were reduced comparing 4 cases to 

8 controls and GABAB expression was altered in 5 cases as compared to 7 controls (Fatemi et al. 

2009a; Fatemi et al. 2009b). Decreased expression of GABAA receptor β3 was shown to be 

associated with MECP2 impairment in brain tissue samples from cases of autism, Angelman 

syndrome, and Rett syndrome (Samaco et al. 2005). In a family-based study, single nucleotide 

polymorphisms were examined in 470 families with at least one case of autism (266 multiplex, 

204 triads) for GABA subunits on 14 alleles. Findings showed significant associations for 

GABAA receptor polymorphisms, in particular the A4 sub-unit and gene-gene interaction 

between receptor subunits (Ma et al. 2005).  

 

In rats, prenatal exposure to the OC pesticides dieldren and lindane reduced GABAA receptor 

binding capabilities in the brainstem (Brannen et al. 1998). In another rat study, prenatal dieldren 

exposure was found to alter mRNA expression and subunit composition of GABAA receptors 

(Liu et al. 1998). Results from in vitro cortical neuronal cultures have shown endosulfan and 

related OC pesticides were shown to increase Akt phosphorylation, an effect mediated by the 

activation of ERβ, and to activate ERK1/2 through a mechanism involving GABAA and 
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glutamate receptors (Briz et al. 2011). In humans, a diminished ability to bind GABA contributes 

to poor muscle tone, which is observed in over half of persons with autism (Ming et al. 2007), 

and induces hyper excitable states as seen in epilepsy, a co-morbidity in approximately 20% of 

autistic cases (Bolton et al. 2011; Tuchman and Cuccaro 2011).   

 

Polychlorinated biphenyls (PCBs) are organochlorines that had broad industrial uses, including 

adjuvants in paints and pesticide formulations (United States Environmental Protection Agency 

2011). Although banned ~40 years ago, PCB exposures still remain a concern to human health 

due to their persistence in the environment. Developmental and in vitro studies in rodents and 

non-human primates have demonstrated the ability of non-coplanar PCBs to cause imbalances in 

excitatory and inhibitory neurotransmission within critical regions for language development 

(Kenet et al. 2007), social cognition (Nakagami et al. 2010), and for seizures (Kim et al. 2009; 

Kim and Pessah 2011). A substantial epidemiologic literature has provided evidence that 

cognitive deficits are associated with elevated PCB exposures, and more recently, elevated 

prenatal exposures to mono-ortho PCBs predicted lower scores on both the Mental Development 

Index (MDI) and the Psychomotor Development Index  (PDI) of the Bayley Scales of Infant 

Development (Park et al. 2010). Furthermore, an analysis of seven hydroxylated metabolites of 

PCBs in cord blood revealed that the metabolite from mono-ortho substituted PCBs were the 

only ones associated with reduced MDI and PDI scores (Park et al. 2009). These findings 

underscore the complexity of toxicities within a compound class, and by the same principle, the 

critical need to characterize differences, e.g., among organophosphates or among pyrethroids.  
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Acetylcholine Signaling Pathways 

ACh mediated neurotransmission is widely involved in the development of both peripheral and 

central nervous systems, and continues to play a critical role in regulation of muscle movement, 

learning, attention, cognition, and memory throughout adulthood. ACh regulates aspects of nerve 

excitation and inhibition that influence brain plasticity, arousal, and reward. ACh increases 

excitation both directly and indirectly, and works through both nicotinic and muscarinic 

receptors to stimulate inhibitory interneurons, thereby modulating the activity of downstream 

effectors in a complex manner (Brown 2010; Scharf 2003).  

 

Several cholinergic abnormalities have been reported in autism (Bauman and Kemper 2005; 

Perry et al. 2001), as reviewed by Deutsch et al. (2010). In brief, studies of post-mortem brain 

tissue have reported reduced nicotinic acetylcholine (ACh) receptor binding in the frontal and 

parietal cortices (comparing 7 cases and 10 controls), reduced M1-muscarinic receptor binding in 

the parietal cortex (comparing 5 cases and 5 controls), and increased concentration of brain-

derived neurotrophic factor (BDNF) (comparing 5 cases and 5 controls), which is involved in the 

development and function of cholinergic neurons (Deutsch et al. 2010). Although these studies 

involved small sample sizes, they suggest cholinergic abnormalities may be present in persons 

with autism.  

 

OP insecticides irreversibly inhibit the active site of acetylcholinesterase (AChE), and while the 

severity of neurodevelopmental effects in animal studies correlate with AChE inhibition, 

additional neurotoxic effects have been observed at concentrations below the level sufficient to 

induce enzyme inhibition (Eddins et al. 2010; Levin et al. 2003; Slotkin et al. 2008). These 
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effects include altered cell packing density, decreases in serotonin receptors and nicotinic 

cholinergic receptor levels (Levin et al.), altered Ca
2+

 and K
+
 ion concentrations (Harrison et al. 

2002; Murgia 2004), and oxidative stress (Aluigi et al. 2005). Metabolism of OP’s is mediated 

by the paraoxonase1 enzyme (PON1), whereby fast metabolizers suffer less AChE inhibition 

than slow metabolizers in response to the same level of exposure (Costa et al. 2005).  

 

Pertinent to the male predominance observed in autism, sex selective developmental effects have 

been seen in animal models exposed to OPs. Chlorpyrifos exposure (1mg/kg/day) in rats during 

postnatal days 1-4 decreased the number of errors in working and reference memory made by 

females, but increased errors made by males. These effects persisted into adolescence and 

adulthood, indicating a long-term consequence of exposure (Levin et al. 2001). Another study in 

rats showed that developmental exposures to low doses of parathion (an OP) induced greater 

developmental deficits in spatial navigation and working memory among males than females 

(Levin et al. 2009). Although these behaviors are not core features of autism, these findings 

provide evidence of different effects of early exposures between the sexes. In addition, parathion 

administration on postnatal days 1 – 4 at levels that barely inhibited cholinesterase was 

associated with deficits at 14-19 months; these deficits worsened with age (Levin et al. 2009).  

 

The ability of OP’s to inhibit AChE varies dramatically by chemical structure, which also 

determines reversibility. Aluigi et al. conducted a study examining the ChE mediated 

developmental effects of OP exposure on chick embryos, and discovered that 10
-6

 M chlorpyrifos 

was sufficient to inhibit head development (Aluigi et al. 2005). Even lower concentrations of 

chlorpyrifos-oxon disrupt axonal growth of rat dorsal root ganglia neurons (Yang et al. 2008), 
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and zebrafish sensory neurons (Yang et al. 2011), indicating that exposure to very low levels of 

this OP has the potential to adversely influence development of neural networks (Yang et al. 

2011). Persistent neurobehavioral consequences of chlorpyrifos exposure in zebrafish have also 

been demonstrated (Eddins et al. 2010; Levin et al. 2003). Although chlorpyrifos is still used 

worldwide in residential settings, residential use has been banned in the U.S. due to 

neurotoxicity. However, no restrictions have been placed on agricultural use.  

 

Oxidative stress and Mitochondrial Dysfunction  

Cellular energy production through the degradation of adenosine tri-phosphate (ATP) by 

mitochondria is necessary for muscle development and brain function. Mitochondrial 

dysfunction has three major consequences: 1) decreased ATP production, 2) increased 

production of reactive oxygen species (ROS) and oxidative damage, and 3) induction of 

apoptosis (Rossignol and Frye 2012). These biochemical changes have been implicated in autism 

and can also be induced by exposure to OP, OC, and carbamate (CB) pesticides (Franco et al. 

2009; Karami-Mohajeri and Abdollahi 2011; Rohlman et al. 2010). Although multiple modes of 

action have been described for specific organohalogens and halogenated insecticides, many 

induce dysregulation of Ca
2+

-mediated signaling and production of mitochondrial ROS 

(Mariussen and Fonnum 2006).  A thorough mechanistic hypothesis of autism via genetic risk 

and oxidative stress has been described by Deth et al. (Deth et al. 2008).  

 

Nearly all insecticides discussed in this review induce oxidative stress. Permethrin, a pyrethroid 

used in agriculture and in topical creams for lice and scabies induces oxidative stress and 

apoptosis in the nervous system of zebrafish (Shi et al. 2011).  Malathion, an OP commonly used 
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in aerial spraying throughout the 1980’s for the Mediterranean fruit fly, and more recently to 

control mosquito vectors of West Nile Virus, induced mitochondrial dysfunction in liver cells  at 

low concentrations and cytotoxicity at higher concentrations (Moore et al. 2010). The OC 

insecticide methoxychlor has been shown in mice to inhibit brain mitochondrial respiration 

(Schuh et al. 2005), and cause mitochondrial dysfunction and oxidative damage in the mouse 

ovary (Gupta et al. 2006). More recently, methoxychlor-mediated mitochondrial dysfunction was 

found to cause oxidative damage and dysfunction of the dopamine system in brains of mice 

(Schuh et al. 2009). Another study examining the effect of the OP dichlorvos on rat brain 

mitochondria found that chronic, low-level exposure can cause mitochondrial disruption and 

apoptosis of neuronal cells due to the release of cytochrome c and activation of caspase 3 

following in vitro exposure (Kaur et al. 2007). Developmental exposure to the OP chlorpyrifos 

permanently decreased dopamine levels in zebrafish into adulthood (Eddins et al. 2010), 

important in the context of an already disrupted dopamine system in autism (Muhle et al. 2004). 

 

 Several recent studies have shown that toxicity of pyrethroid insecticides, many of which are 

organohalogen derivatives, is mediated by both dysregulation of cytoplasmic Ca
2+

 signaling and 

induction of oxidative stress (Cao et al. 2010; Kale et al. 1999; Soderlund 2011; Yan et al. 2011; 

Zhang et al. 2010). After the ban on residential uses of chlorpyrifos, household OP insecticides 

have been replaced with the other insecticides, namely pyrethroids and fipronil, a phenylpyrazole 

insecticide. A comparative toxicity study was conducted on rat PC12 cells to evaluate the 

hypothesis that fipronil is less toxic than chlorpyrifos, but fipronil was found to induce higher 

oxidative stress than chlopyrifos, an effect that was not mediated by the GABAA pathway 

(Lassiter et al. 2009). 
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Although the role of mitochondrial function in the autistic phenotype is not fully understood, 

approximately 8% of ASD cases experience mitochondrial dysfunction, compared with 0.05% of 

the general population (as reviewed by Haas, 2010). Mitochondrial dysfunction and increased 

mtDNA over-replication and mtDNA deletions were reported more frequently in lymphocytes 

from 10 children with autism as compared with lymphocytes from 10 typically developing 

controls (Giulivi et al. 2010).  

Immune Toxicity 

Prenatal disruption of immune development can result in atopy, allergy, deficits in immune-

competence, and auto-immunity in early childhood (Hertz-Picciotto et al. 2008). Recent studies 

on intestinal flora have shown the immune system is highly involved and inextricably linked 

with neurodevelopment and subsequent behavior (Diamond et al. 2011; Heijtz et al. 2011). In 

turn, the immune response can also be strongly influenced by neurochemistry (Diamond et al. 

2011). Children with autism experience a wide array of immune abnormalities. Recent reviews 

on this topic report altered cytokine profiles, altered cellular immunity, low levels of 

lymphocytes and t-cell mitogen responses, neuro-inflammation, and auto-antibodies directed at 

nuclear proteins (Ashwood et al. 2006; Goines and Van de Water 2010).  Reduced levels of IgG 

and IgM have also been reported, which were correlated with higher prevalence of aberrant 

behavioral symptoms in a study of 271 children with autism, or developmental delay, or who 

were typically functioning (Heuer et al. 2008). In a comparison of plasma cytokine levels from 

children with autism (N=97) and typically developed controls (N=87), cases had higher levels of 

pro-inflammatory cytokines compared with neurotypical children, and the concentrations of 

cytokines corresponded with impaired behavioral outcomes in a dose-response fashion 

(Ashwood et al. 2011).  
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Exposure to several types of pesticides may result in decreased immune-competence, immune-

enhancement, and/or auto-immunity (Corsini et al. 2008). OP’s are particularly immunotoxic 

(Galloway and Handy 2003), and have been shown to suppress natural killer cells, lymphokine 

activated killer cells, and cytotoxic t-lymphocytes by inhibiting granzymes, impairing the 

FasL/Fas pathways, and inducing apoptosis of immune cells (Li 2007). Pyrethroids have also 

been shown to be immunotoxic in animal models. Rats treated sub-chronically with permethrin 

showed large increases of superoxide anion production and hydrogen peroxide-myeloperoxidase 

activity in polymorphonuclear neutrophils (Gabbianelli et al. 2009). These effects were 

demonstrated not only for permethrin, but also for its major metabolites.  

 

Insecticide exposures can induce inflammatory or suppressive immunological effects depending 

on the compound and the immunological outcome in question. Gestational exposure of rats to 

atrazine, an endocrine disrupting triazine herbicide, induced immunosuppressive effects 

(specifically, decreased delayed type hypersensitivity and antibody production) in male offspring 

only (Rooney et al. 2003). In a study of both male and female mice, gestational exposure to 

atrazine at non-toxic, environmentally relevant doses administered from gestation day 14 to 

postnatal day 21,was associated with decreased socialization behaviors and changes in 

exploratory behavior, with males displaying feminized behavioral profiles (Belloni et al. 2011).  

 

Neuro-inflammation has been observed in post-mortem brain tissue of people with autism across 

several age ranges (Li et al. 2009; Morgan et al. 2010; Vargas et al. 2005). Chlorpyrifos, an 

organophosphate banned for residential use in 2002, and cyfluthrin, a type II pyrethroid used to 

replace chlorpyrifos, were compared for toxicological and toxicogenomic effects to primary 
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human fetal astrocytes. Cyfluthrin had equivalent or more toxic effects in most assays, and up-

regulated several insulin related genes and pro-inflammatory genes on the IFN-γ pathway, 

including IL6R and GFAP. Additionally, both compounds were found to promote inflammatory 

activation of astrocytes. The authors suggested that the combination of increased insulin 

production and inflammation could lead to a state of chronic brain inflammation that might 

significantly alter brain development (Mense et al. 2006).  

 

Taken together, these studies indicate that gestational exposure to pesticides can induce 

immunological abnormalities as well as behavioral abnormalities. It is possible that the 

neurodevelopmental and the immune abnormalities observed in autism are downstream 

manifestations of the same underlying process given the tightly regulated interconnection 

between the developing systems in utero. The role of the immune phenomena as a cause, effect, 

or side effect of autism was recently reviewed and was postulated to be in part causal (Onore et 

al. 2012). In addition to autism, schizophrenia and major depressive disorders have also been 

noted to be accompanied by perturbations of the immune system, recently reviewed in an 

extensive monograph (Patterson 2011).  

 

Parental thyroid hormone levels and brain development 

Adequate levels of in utero thyroid hormones are critical for brain development. Maternal 

thyroid impairment has been suggested as an underlying mechanism for developmental 

impairments resulting from exposures to environmental chemicals such as polychlorinated 

biphenyls (PCBs), utilized in a wide variety of industrial uses, and polybrominated diphenyl 

ethers (PBDEs) used as flame retardants (Winneke 2011). Pesticides have been found to interfere 
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with thyroid function by preventing iodine uptake (mancozeb, thiocyanates, 2,4-D) and 

peroxidation (aminotriazole, endosulfan, malathion), and by preventing the conversion of 

thyroxine(T4) to triiodothyronine (T3) (aminotriazole, dimethoate, fenvalerate) (Colborn 2004).  

In a review of the effects of mild to moderate iodine deficiency in humans, diminished maternal 

T4 was associated with disorders of mental and/or psychomotor development (Zimmermann 

2007) .  

 

Roman hypothesized that even transient intrauterine deficits in thyroid hormones (3 days) at 

critical points in gestation could alter the cortical architecture interfering with neuronal migration 

and Purkinje cell growth (Roman 2007), both of which have been observed in autopsy studies of 

autism (Fatemi et al. 2002; Wegiel et al. 2010). Because the human fetus does not start 

producing sufficient thyroid hormones until gestational week 18 (Burrow et al. 1994), adequate 

maternal thyroid hormones  are critical to neurodevelopment in early fetal life, particularly for 

reelin regulated neuronal migration (Pathak et al. 2011). Additionally, sex mediated effects have 

been observed following exposure to chlorpyrifos on gestational days 17-20, inducing increased 

levels of free T4 in female but not male mice (Haviland et al. 2009).  

 

Vulnerable genetic sub-populations 

The primary neurological targets of commonly used insecticides (Scharf 2003) can be paired 

with vulnerable genetic subpopulations that may be at increased risk for autism (Table 1).  

Because of both the large number of genetic alterations and gene-gene interactions that have 

been implicated in autism, and the phenotypic heterogeneity in cases, the notion that a single 

environmental exposure will be to blame for the majority of cases is unrealistic.  Also, because 
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the dosage of pesticides to non-occupationally exposed women is likely to be lower than that 

required to induce mechanisms of injury observed in many animal models, genetic susceptibility 

becomes a critical factor in this discussion.  

 

In 2001, the reelin gene was implicated in autism risk when repeats (11+) in the 5’ untranslated 

region were associated with 72% transmission to affected siblings and only 32% transmission to 

unaffected siblings (Persico et al. 2001). The proteolytic activity of reelin on extracellular matrix 

proteins that control neuronal migration is significantly inhibited by OP pesticides (Sinagra et al. 

2008), and OP metabolism efficiency is regulated by paraoxonase 1 (PON1) (Mackness et al. 

1997).  Interestingly, an association between less active forms of the PON1 gene and autism was 

observed in Caucasian families in North America, but not in Italian families, leading authors to 

hypothesize that the slow metabolizing polymorphism confers risk in areas with high levels of 

organophosphates but may not affect autism risk otherwise  (D'Amelio et al. 2005).   

 

Conclusions 

Here we have reviewed several mechanisms by which pesticides may increase the risk of autism, 

summarized in Table 2. Pesticides may or may not, however, have played a role in the trend of 

increasing autism prevalence, which itself is likely due to a confluence of multiple phenomena, 

including changes in diagnostic practices, physician and lay awareness, the availability of 

treatments, and the prevalence of a variety of environmental chemical, medical, and food-related 

exposures. While pesticide use patterns have changed, home and ambient environments also 

include other exposures that have changed over time due to regulatory and economic factors 

(e.g., flame retardants, plasticizers, solvents, stabilizers, and anti-microbials).  
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Pesticides are composed of a parent product, inert ingredients, and in some cases agonists that 

enhance the functionality of the parent compound, and all of these ingredients may be degraded 

to metabolites that also distribute throughout the body. Consequently, pesticide formulations 

represent a mixture of compounds that might contribute to observed effects. Difficulties in 

distinguishing the effects of metabolites vs. parent compounds may have confounded 

associations observed in many studies of urinary metabolites and neurodevelopment, and very 

few studies have examined main effects of effect modification of exposure to agonists such as 

piperonyl butoxide, which slows the metabolism of several types of pesticides by inhibiting 

cytochrome P450 enzymes.  

 

Although pesticides are a biologically plausible contributor to autism, research in several critical 

areas is needed to understand cognitive and behavioral consequences of gestational exposure in 

humans. First, animal studies suggest critical windows of exposure, yet in humans the window or 

windows of biologic susceptibility remain unknown, and would be expected to vary by 

mechanism. Second, studies of non-toxic, environmentally relevant doses are needed to 

understand effects of developmental neurotoxicity in the context of a background of genetic 

susceptibilities. Third, the vast majority of exposures occur in combination with exposures to 

other ubiquitous and/or persistent compounds such as flame retardants, plasticizers, and other 

pesticides. More research on combinations of exposures may reveal interactions between 

environmental exposures, such as effect modification by chemical additives to pesticide 

compounds. In light of the recently revised prevalence estimates of autism (1 in 88), large birth 

cohorts, such as the National Children’s Study (NCS), which aim to enroll women at pregnancy 
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and follow the children over time, are well positioned to obtain enough cases and to examine 

prenatal exposures prospectively. Pending accurate and reliable exposure estimates in critical 

time windows, and enrollment of approximately 100,000 children resulting in 1,000 or more 

cases of autism, NCS can contribute greatly to our understanding of these associations. Finally, 

more case-control studies with large populations of participants with confirmed diagnoses of 

autism that examine environmental exposures in relation to severity of the core domains of 

language impairment, social avoidance, and repetitive behaviors or insistence on sameness may 

shed light on possible exposure-related endophenotypes. 

 

Although we have described several possible avenues by which pesticide exposure may 

influence autism, the dearth of studies on large occupational and pregnancy cohorts with 

adequate exposure assessment impedes our understanding of 1) whether pesticides are 

consistently associated with autism risk and 2) if so, which pesticide compounds and which 

components of those compounds might actually contribute to autism risk.  Grandjean and 

Landrigan hypothesize that our exposure to chemicals that have not been adequately tested for 

developmental neurotoxicity has led to a silent pandemic (Grandjean and Landrigan 2006).  

Further research is warranted to provide the evidence base that can ultimately lead to reduction 

or elimination of these potentially damaging exposures through changes to regulatory policy, 

consumer behavior, or dietary choices.
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Table 1. Insecticide compounds with a generalized excitatory neurological effect. Adapted from 

Michael E. Scharf’s Neurological Effects of Insecticides, published in the Encyclopedia of Pest 

Management, 2003 (Scharf 2003). 

 

Primary neurological 

target 

Insecticide class Mode of action Vulnerable 

subpopulations 

Acetylcholinesterase Organophosphate Inhibition PON1 polymorphisms 

Carbamate Inhibition  

Voltage-gated sodium 

channel 

Organochlorine Modified gating 

kinetics 
SCN1A, SCN1B  

Pyrethrin/pyrethroid Modified gating 

kinetics 

HCE1 (CES1) 

HCE2 (CES2) 

GABA-gated chloride 

channel 

Cyclodienes, a form of 

organochlorines  

Antagonism GABA receptor 

polymorphisms 

Phenylpyrazole Antagonism  

Nicotinic acetylcholine 

receptor
a
 

Neonicotinoid Agonism Haploinsufficiency of 

α7 nAChR 
A
 Neonicotinoids first induce excitation, which is followed by inhibition
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Table 2. Mechanisms by which gestational exposure to certain classes of pesticides may induce observed pathophysiologic symptoms 

of autism. 

 

Mechanism of 

Action 

Route to Autism 

Pathophysiology 

Observed effects Specific pesticides Class of pesticide Reference 

Developmental 

neurotoxicity 

Alteration of 

excitation/ inhibition 

mechanisms  

Decrease in GABA 

receptors 

Dieldrin (prenatal exposure in 

rats) 

Organochlorines (Brannen et al. 

1998; Liu et al. 

1998) 

Inhibition of GABA  General function of 

organochlorine, pyrethroid 

pesticides 

Organochlorine, 

pyrethroid 

 

Inhibition of AChE General function of 

organophosphate, carbamate 

pesticides 

Organophosphates, 

carbamates 

 

Mitochondrial 

dysfunction 

Oxidative stress Apoptosis of neuronal 

cells 

Dichlorvos (rat brain) Organophosphates  

Inhibition of 

mitochondrial 

respiration 

Methoxychlor (mice brain) Organochlorines (Schuh et al. 

2005; Kaur et al. 

2007) 

Immune toxicity Immunosuppression Decreased delayed 

type hypersensitivity 

and antibody 

production 

Atrazine (gestational 

exposure to rats) 

Triazine (Rooney et al. 

2003) 

Neuro-inflammation Activation of human 

fetal astrocytes, 

increased expression 

of pro-inflammatory 

cytokines 

Cyfluthrin, chlorpyrifos 

(primary human fetal 

astrocytes) 

Pyrethroid, 

organophosphate 

(Mense et al. 

2006) 

Maternal 

hypothyroxinemia 

Insufficient 

gestational thyroid 

hormones 

Decreased T4, 

inhibition of T4 de-

iodination to T3, 

prevention of iodine 

uptake 

Acetechlor, alachlor, 

mancozeb, thiocyanates, 2,4-

D, aminotraizole, endosulfan, 

malathion (multiple animal 

studies)  

Organochlorines, 

thiocyanates, 

organophosphates 

(Colborn 2004; 

Goldner et al. 

2010; Rathore et 

al. 2002; Cheek 

et al. 1999) 
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Figure Legend 

 

Figure 1. Agricultural pesticide trends in the US by percent of sales, 1964-2000 (United States 

Department of Agriculture 2006). 
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