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Abstract

Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent
studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the
role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of
gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating
known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal
modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are
involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and
sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both
simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules
revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major
perturbations in the two sub-networks of neuronal genes to ASD risk.

Citation: Ben-David E, Shifman S (2012) Networks of Neuronal Genes Affected by Common and Rare Variants in Autism Spectrum Disorders. PLoS Genet 8(3):
e1002556. doi:10.1371/journal.pgen.1002556

Editor: Greg Gibson, Georgia Institute of Technology, United States of America

Received October 4, 2011; Accepted January 11, 2012; Published March 8, 2012

Copyright: � 2012 Ben-David, Shifman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant from the National Institute for Psychobiology in Israel and the Legacy Heritage Fund program of the Israel
Science Foundation (grant no. 1998/08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sagiv@vms.huji.ac.il

Introduction

Autism is the most severe end of a group of neurodevelopmental

disorders referred to as autism spectrum disorders (ASDs). ASD is

a heterogeneous genetic syndrome characterized by social deficits,

language impairments and repetitive behaviors. Although it is

known that ASD has a genetic basis [1–3], its genetic architecture

is unclear. Previous studies have identified both common and rare

variants, including de novo mutations, as risk factors for ASD [4,5].

However, how much of the genetic risk can be attributed to rare

versus common alleles is unknown. Since ASD is relatively

common with a complex pattern of inheritance it was previously

suggested to be caused by multiple common variants [4,5], where

each of the common variants only makes a small contribution to

the risk of disease. The principal methods for discovering common

variations related to ASD include association studies of candidate

genes, and more recently genome-wide association studies

(GWAS) [6,7]. Despite major efforts to identify common variants

associated with ASD, the success so far has been limited [6,7]. At

the same time, an increasing number of studies have shown that

rare and de novo mutations contribute to ASD [8–12]. These rare

variants include mutations causing single-gene disorders, cytoge-

netically visible chromosomal abnormalities, and more recently

the identification of rare and de-novo copy number variations

(CNVs) [8–10,12]. The genes already known to be disrupted by

rare variants still account for only a small proportion of the cases,

because many of them have only been found in one or very few

individuals [13]. Other findings that further complicate the

interpretation and utilization of rare variants is the fact that many

of the same variants have been found in patients with distinct

illnesses (such as schizophrenia, epilepsy, and intellectual disabil-

ity), as well as in healthy family members or controls [14].

This genetic heterogeneity constitutes a considerable obstacle to

establishing a thorough understanding of the etiology of ASD.

One promising avenue of exploration is to find key molecular

pathways and apply system-wide approaches to determine the

function of the genes disrupted in ASD. Delineating these

pathways will not only lead to insights into the molecular basis

of ASD, but may ultimately lead to potential treatments. Most

attempts so far have concentrated on determining the functional

connection between genes affected by CNVs. These studies

showed that many of the genes are related to synapse

development, cellular proliferation, neuronal migration and

projection [15,16]. Another way to identify the connection

between autism susceptibility genes is based on studying protein

interactions for genes mutated in syndromes associated with

autism [17]. This study suggested that shared molecular pathways

are implicated in different ASD associated syndromes [17]. A

different approach to identify key molecular pathways is based on

gene expression, and relies on the assumption that co-expressed

genes are functionally related [18]. A weighted gene co-expression

network analysis (WGCNA) of specific human brain regions

(cerebral cortex, cerebellum and caudate nucleus) demonstrated

that the transcriptome of the human brain is organized into

modules of co-expressed genes that reflect different neural cell

types [19]. Recently, this type of analysis was also applied to
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compare the expression profiles of three brain regions from autistic

and control individuals. This network analysis led to the

identification of specific co-expression modules that are differen-

tially expressed in ASD and controls [20]. These included a

neuronal module that was enriched for genes with low GWAS P-

values, suggesting that the differential expression of this module

between cases and controls reflects a causal relationship [20].

In the current study, we constructed a gene network using a

WGCNA approach based on a widespread survey of gene

expression undertaken by the Allen Human Brain Atlas project

(http://www.brain-map.org). This survey of gene expression

provides unprecedented coverage across different brain regions.

We found modules which are associated with specific neural cell

types, and modules with highly significant enrichment for specific

cellular processes. We used the gene network to address several

fundamental questions regarding the genetic architecture of

autism. First, can we identify gene networks that are perturbed

by rare variations that in turn lead to ASD? Second, can we

identify gene networks that are perturbed by common variations?

Third, do rare and common variations converge on the same

molecular pathways or do they represent diverse biological

etiologies? Lastly, can we integrate the gene network with GWAS

results to predict potential genes associated with ASD? To answer

these questions we integrated the co-expression network with the

results of autism GWAS and with known rare mutations. We

identified specific modules that are enriched for both rare and

common variations that are potentially associated with ASD risk.

We replicated the enrichment in two additional samples. The

modules showing the highest enrichment for rare and common

variants in ASD included highly connected genes that are involved

in synaptic and neuronal plasticity, and are expressed in areas

associated with learning and memory and sensory perception.

Additionally, we found that a genetic risk score based on these

modules significantly predicts ASD risk. Taken together, these

results suggest a common role for rare and common variations in

autism, and illustrate how rare and de novo mutations, in

conjunction with common variations, can act together to perturb

gene networks involved in neuronal processes, and specifically

neuronal plasticity. Furthermore, the modules found in this study

may serve as starting points for designing potential therapeutic

interventions for ASD.

Results

Network analysis of brain transcriptome identifies
modules representing specific cell types and molecular
functions

In order to construct a robust network of the human brain

transcriptome we used the Allen Brain Atlas RNA microarray

data, which to the best of our knowledge, is one of the most

comprehensive expression profiling of different regions of the

human brain. The Allen Brain Atlas RNA microarray data

includes 1340 measurements from two individuals, representing

the entirety of the adult human brain. We generated a network

based on a combined dataset, as the two individuals exhibited high

correlations in trends of expression and connectivity (Figure S1).

The network included 19 modules of varying sizes, from 38 to

7385 genes (Figure 1A, Table S1). The different modules are

color-coded for presentation purposes and referred to hereafter

based on these colors (Figure 1A). To study the modules specificity

to brain areas, we plotted the modules eigengenes across different

anatomical regions, and observed that none of the modules were

specific to one anatomical region (Figure S2, Table S2). We

hypothesized that the modules may correspond to cell types or

subcellular compartments, which are distributed in different

densities across different brain areas. We thus tested the modules

for enrichment of specific neural cell populations based on gene

expression levels in neurons, astrocytes and oligodendrocytes, as

found in a survey performed on mouse brain cells [21]. One

module, Magenta, stood out as showing a very high enrichment

for genes up-regulated in astrocytes (relative risk [RR] = 3.93,

P,0.0001) (Figure 1B). Three other modules showed enrichment

for genes up-regulated in neurons (Figure 1B). Of these, Salmon

showed the highest enrichment signal (RR = 3.18 P,0.0001), in

addition to two other modules, Lightgreen and Grey60, that also

showed substantial enrichment for neuronal genes (RR = 2.75 and

RR = 2.16, respectively, with P,0.0001 in both). Enrichment for

genes up-regulated in oligodendrocytes was found in the Blue

module (RR = 3.04, P,0.0001), and the Greenyellow module

(RR = 1.92, P,0.0001) (Figure 1B). To test whether the modules

were specifically enriched for the most representative genes of each

cell type, we used a score of the relative expression in a particular

cell type relative to other cells (Figure S3). Notably, the modules

with the strongest enrichment for genes expressed in neurons,

astrocytes and oligodendrocytes showed specific enrichment for

the most up-regulated genes in the corresponding cell types (Figure

S3). We tested the degree of overlap between these cell type-

specific modules and ones that were discovered in a previous study

that constructed a gene co-expression network that was largely

based on differences between individuals rather than between

brain areas [19]. The general comparison of the two networks is

described in Table S3. A significant overlap in gene content

between the studies was observed for an oligodendrocyte module

(Blue, RR = 5.29, P,261025) and the astrocyte module (Magen-

ta, RR = 5.62, P,261025). Similarly, the Salmon module

significantly overlapped with a previously identified cortical

module (RR = 9.73, P,261025) and the Grey60 module showed

a high overlap with a parvalbumin-expressing cortical interneuron

module (RR = 83.44 P,261025). The module Lightgreen had no

significant overlap with any of the previously identified modules.

To further characterize the different modules we used gene

ontology (GO) analysis (Table S4). The Salmon module was

enriched for genes active in the synapse (P = 2.261026) and

involved in synaptic transmission (P = 4.861023), as well as for

genes in the calmodulin-binding pathway (P = 9.961024). The

Lightgreen module was also enriched for genes active in the

Author Summary

Autism spectrum disorders (ASD) are neurodevelopmental
syndromes with a strong genetic basis, but are influenced
by many different genes. Recent studies have identified
multiple genetic risk factors, including rare mutations and
genetic variations common in the population. To identify
possible connections between different genetic risk
factors, we constructed a network based on the expression
pattern of genes across different brain areas. We identified
groups of genes that are expressed in a similar pattern
across the brain, suggesting that they are involved in the
same processes or types of cells. We found that the
genetic risk factors were enriched in specific groups of
connected genes. Of these, the strongest enrichment was
discovered in a group of neuronal genes that are involved
in processes of learning and memory, and are highly
expressed during infancy. Further study of this group of
genes has the potential to reveal a more detailed picture
of the neuronal mechanisms leading to ASD and to
provide knowledge required for developing diagnostic
tools and effective therapies.

Common and Rare Variants in Autism
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synapse (P = 1.661025). The GO analysis also showed a different

module, Black, to be highly enriched for genes in the nucleosome

core (P = 1610231). The representative of the gene expression

profile of the Black module (the module eigengene) had the highest

values in the corpus callosum and cingulum bundle, suggesting

that this module may represent enrichment for cell bodies of glia

cells (Table S5). In the Red module the genes having a positive

relationship with the module eigengene were enriched for

mitochondrion (P = 2.9610240), and the genes having a negative

relationship were enriched for DNA binding (P = 6.6610223) and

regulation of transcription (P = 2.2610221). Another module,

Pink, was highly enriched for genes containing a Kruppel-

Associated Box domain (P = 2.2610246). This group of zinc finger

transcription factors has been recognized as transcriptional

repressors [22]. The Tan module was highly enriched for genes

involved in the G-protein-coupled receptor pathway

(P = 2.6610250), as well for genes involved in olfactory receptor

activity (P = 2.2610242), hormonal activity (P = 1.1610228) and

HOX genes (1.6610211).

Another way to infer the function of the modules is based on the

known function of highly connected genes with central positions

within the modules (‘‘hub’’ genes). We explored the strongest

connections in each module using Cytoscape software [23] (Figure

S4). In the Magenta module, which was found to be highly

enriched for genes up-regulated in astrocytes, the most connected

gene was FGFR3, which was reported to mark astrocytes and their

neuroepithelial precursors in the CNS [24] (Figure 1C). The

Yellow module, which was highly significantly enriched for genes

involved in protein translation (P = 7.4610298), presented as two

separate sub-networks of genes (Figure 1D). One group of highly

connected genes is involved in protein translation, and the other

group contains genes related to the function of microglia

(Figure 1D). The central components of the microglia sub-network

include TYROBP, AIF1, RGS10, CX3CR1, as well as other genes

Figure 1. Weighted gene co-expression network analysis (WGCNA) of human brain transcriptomes. (A) Color map showing the relative
sizes of the different modules in the WGCNA analysis. Colors correspond to arbitrary names given to each module. (B) Enrichment for genes up-
regulated in Neurons (left), Astrocytes (center) and Oligodendrocytes (right). For each module, the relative risk (RR) for harboring cell-type specific
genes is plotted. Insets show the distribution of the rank of enriched genes located in modules with the highest cell-type specific RR. The distribution
is shown for the Salmon, Magenta and Blue module for genes enriched in neurons, astrocytes, and oligodendrocytes (respectively). (C) Top
connected genes in the Magenta module. Nodes are ordered and sized according to their degree. (D) Top connected genes in the Yellow module,
revealing two distinct groups of genes. One group (left circle) includes genes involved in protein translation, and the other (right circle) includes
Microglia specific genes.
doi:10.1371/journal.pgen.1002556.g001
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which are known to be involved in microglia function and

regulation [25–27]. These results suggest that the module is

representative of microglia which also show high protein

translation associated with their high proliferation rate. Consistent

with this observation, the module eigengene of the Yellow module

was most highly expressed in the corpus callosum, where

immature microglial progenitor cells accumulate [28,29].

Given that our analysis highlighted three groups of neuronal

genes, the next step was to determine whether they represent three

different types of neurons. To that end, we visualized the top

connections in the three modules (Figure 2A), and highlighted the

brain areas showing the highest values for the first principal

component of each module (the module eigengene) (Figure 2B).

The top connections in one module (Grey60) included the genes

KCNC1, SCN1B, PVALB and HAPLN4 (Figure 2A). These genes

have been shown to be highly expressed in a group of fast-spiking,

parvalbumin-expressing cortical interneurons [30,31]. The mod-

ule was most expressed in the superior temporal gyrus, an area

that receives auditory signals from the cochlea [32], the dentate

nucleus, which is a structure linking the cerebellum to the rest of

the brain [33], and the dorsal lateral geniculate nucleus, which is

the primary relay center for visual information [34]. The

eigengene of the Lightgreen module was most expressed in brain

regions involved in sensory processes, including the inferior

occipital gyrus and the lingual gyrus of the occipital lobe

(Figure 2B), which are involved in processing visual information

[35,36], and the post central gyrus, which contains the primary

somatosensory cortex [37]. The module Lightgreen harbors highly

connected genes involved in clathrin-dependent endocytosis in the

synapse. These include SNAP91 (also known as AP180), VSNL1

(also known as VILIP-1), SYN1 and and STXBP1 [38–41]. The

Salmon module included several highly connected genes (FOXG1,

Figure 2. Modules correspond to specific neuronal sub-groups acting in specific regions. (A) For the three neuronal modules, the twenty
genes with the most connections out of the top 150 connections in the module are illustrated. (B) For the three neuronal modules, the ten areas
showing the highest expression of the module eigengene were visualized using Brain Explorer (http://www.brain-map.org). A superficial view of the
brain is shown on the right, and an in-depth view is shown on the left. As some regions were available for only one of the two individuals, the regions
are shown in both brains.
doi:10.1371/journal.pgen.1002556.g002
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LHX2, MKL2, CDH9 and genes of the protocadherin family),

which are all known to be involved in neurogenesis and neuronal

plasticity in the developing brain [42–47]. FOXG1, MKL2 and

PCDH20 have also been shown to be involved in structural and

functional plasticity of neurons in the adult brain [48–50].

Similarly, the eigengene of the Salmon module was most expressed

in brain regions that are involved in learning and memory,

including the hippocampus (dentate gyrus and CA1 field) and the

dorsal striatum (tail of the caudate nucleus and putamen)

(Figure 2B).

Rare and common genetic risk variants are significantly
enriched in specific neuronal modules

We sought to test whether autism genes affected by rare or

spontaneous mutations are associated with specific modules. A list

of 246 autism susceptibility genes was compiled using the SFARI

gene database (https://sfari.org/sfari-gene), and was restricted to

the 121 genes with reported rare mutations in autism. Of these,

91% (109 genes) were represented in our network. Genes on the

list exhibited a significantly skewed distribution between the

modules (P = 0.025, Fisher’s test). Specifically, three modules

showing up-regulation in neurons also showed the highest

enrichment for autism risk genes. The most enriched module

was the Salmon (RR = 2.92), followed by Lightgreen (RR = 2.19)

and Grey60 (RR = 1.89) (Figure 3A). To test whether CNVs also

tended to be distributed in a non-random way among modules, we

assembled a list of de-novo CNV events from a recent study [10],

and calculated enrichment to specific modules. As larger genes can

be expected to harbor more CNVs by chance, and since neuronal

specific genes are larger than average [51], we corrected for gene

size in our analysis (see Materials and Methods). However, none of

the modules showed significant enrichment for CNV events after

correcting for gene size.

Subsequently, we tested the distribution across modules of genes

affected by common variants, as reflected by low P-values in a

GWAS for autism, previously performed [6] on multiplex families

(with more than one member of the family with ASD) from the

Autism Genetic Resource Exchange (AGRE) (Figure 3A). Notably,

two of the three neuronal modules (Salmon and Lightgreen),

which also showed the highest enrichment for genes affected by

rare variants, were also found to be significantly enriched for genes

affected by common variants (Salmon, P = 0.000030; Lightgreen,

P = 0.0019; Bonferroni corrected P,0.05). The enrichment in the

third neuronal module (Grey60) was not significant after

correcting for multiple tests (nominal P = 0.005, Bonferroni

corrected P = 0.095). In addition to the neuronal modules,

significant enrichment was found in the astrocyte-associated

Magenta module (P,0.00001) and the oligodendrocyte associated

Blue module (nominal P = 0.0008, Bonferroni corrected

P = 0.015).

We next examined the correlation between the degree of

enrichment of rare and common variants for the different

modules. Strikingly, the overall propensity to harbor genes with

common variants enriched in autism, and the overall propensity to

harbor genes with rare mutations linked to autism, were

Figure 3. Rare and common variations in ASD perturb shared neuronal modules. (A) Color map showing the different modules in the
WGCNA analysis. Below it, heat maps depicting, for each module, the relative risk (RR) for harboring genes with rare mutations (top), the enrichment
for low GWAS p-values in the AGRE cohort (center) and the combined enrichment for low GWAS p-values across the three GWAS (bottom). The
intensity of the red hue corresponds to higher enrichment of common or rare variants. (B) For each module, the enrichment for low GWAS P-values
(2log10P) in the AGRE cohort (top) or combined across the three cohorts (bottom) is plotted against the relative risk for rare mutations. The color of
the points corresponds to the names of the modules. (C) The connections in the two neuronal modules enriched for common and rare variations,
Lightgreen (left) and Salmon (right), are visualized. Three highly connected genes in each module (hub genes) are shown in red; genes with a gene-
wide p-value,0.05 in light blue, and genes with known rare mutations in autism in yellow.
doi:10.1371/journal.pgen.1002556.g003
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significantly correlated (Pearson correlation r = 0.69, P = 0.0010)

(Figure 3A, 3B). Specifically, two of the three modules representing

neuronal genes (Lightgreen and Salmon) were significantly

enriched for genes affected by both rare and common variations,

with the highest overall evidence for association in the Salmon

module. As can be seen in Figure 3C, the genes affected by

common and rare variants within the Lightgreen and Salmon

modules are highly interconnected.

Differences in transcriptome organization between autistic and

normal brain have been recently reported, including a neuronal

module associated with ASD [20]. To study how the enrichment

of rare and common variants corresponded to this study, we tested

the overlap between the neuronal modules obtained in our study

and the neuronal module that was previously shown to be

differentially expressed between cases and controls [20]. Interest-

ingly, the highest overlap was observed with the Grey60 module

(RR = 6.18), followed by Lightgreen (RR = 4.59), but there was

only relatively minor overlap with the Salmon module

(RR = 1.84).

To test the robustness of the enrichment of GWAS low p-values

in specific modules we first applied the same analysis on GWAS

data for type-2-diabetes [52]. The analysis with type-2-diabetes did

not reveal any association with the modules. Next, we attempted to

replicate the results in two additional GWAS of ASD. The first is a

previously reported [53] GWAS from the Autism Genome Project

(AGP), which includes both multiplex and simplex families

(around 40% of families had two or more ASD children). The

second is based on genotyping data of simplex families (with a

single child with ASD) from the Simons Simplex Collection (SSC).

Inherited and de novo CNVs were previously reported for this

sample [10], but no genome-wide association for common variants

was reported. We performed a genome-wide association using the

transmission disequilibrium test (TDT). To reduce the genetic

heterogeneity, in both datasets we focused on families with

European ancestry (Figure S5A). Quantile-quantile (Q-Q) plots

showed that there was minimal inflation of the test statistics

(genomic control inflation factor for AGP lGC = 1.0268, for SSC

lGC = 1.0013) (Figure S5B). None of the SNPs in the SSC cohort

were genome-wide significant (P,561028). The 10 most signif-

icant SNPs in the SSC GWAS are shown in Table S6. We also

examined the 29 SNPs that were proposed as possible ASD risk

variants by previous genome-wide studies [6,7,53] (Table S7). Of

these, 22 were either available in our data or had a proxy SNP

with an R2.0.8. None of the 22 SNPs were associated in the SSC

cohort (all P.0.05).

Despite the limited results when testing single SNPs by

association, the enrichment of low p-values in specific modules

was replicated across different GWAS. The enrichment in the

neuronal modules, Salmon and Lightgreen, was replicated both in

the AGP (Salmon, P = 0.012; Lightgreen, P = 0.000057) and in the

SSC GWAS (Salmon, P = 0.033; Lightgreen, P = 0.0026). The

combined p-value for low p-values enrichment, across the three

studies, was 2.261026 for the Salmon module, and 7.361028 for

the Lightgreen module. In addition, a replication of the

enrichment of low p-values was obtained for the Blue and

Magenta modules using the results of the AGP GWAS (Blue,

P = 0.014; Magenta, P = 0.0011), but not with the SSC (Blue,

P = 0.062; Magenta, P = 0.43). Based on the three genome-wide

studies the most enriched module for common risk variants is the

Lightgreen module, while the Salmon is the module most enriched

for rare variants (Figure 3A). However, the correlation between

the enrichment of rare variants and common variants (based on

the three GWAS together) remained significant (r = 0.72,

P = 561024) (Figure 3B).

To identify candidate genes central to the enrichment for

common variants, we calculated a gene-wide P-value for

association with ASD for all genes that contributed to the

enrichment score in the three samples (showing overrepresentation

of low GWAS P-values in the modules). Eighty five genes passed a

cutoff of 0.05 for gene-wide significance in one of the studies

(Table S8). Out of these 85 genes, SNPs in four genes (DMD,

ATP2B2, MACROD2 and MKL2) were previously found to be

associated with ASD [53–56].

The replicated enrichment suggests that multiple common

variants, particularly in sub-networks of neuronal genes, contrib-

ute collectively to ASD risk. This raised the possibility that

common variants within the two neuronal modules may

specifically predict ASD risk. If the observed enrichment is specific

to ASD, one would expect that a score that incorporates the effect

of multiple SNPs would be a significant predictor of ASD risk. To

test this, we performed a genetic risk score analysis based on

79,079 tag SNPs (as previously reported [57]). The AGRE dataset

served as the discovery sample. We selected SNPs at different

thresholds of association p-values (PT), and based on whether they

belong to the neuronal modules, Salmon or Lightgreen. Based on

the GWAS results in the AGRE, we calculated a genetic score for

each individual in the AGP or SSC samples and tested whether the

score can predict ASD status. While a marginally significant

correlation was observed between the score and diseases status

with genome-wide data (PT,0.3, AGP, P = 0.029; SSC,

P = 0.0085), the score based on the neuronal modules was highly

significant (Figure 4). The score based on SNPs in the Lightgreen

module had increased association with ASD risk with more liberal

thresholds in both AGP and SSC samples, with 0.66–0.5%

(respectively) of the variance explained at the threshold of PT,0.5

(AGP, P = 1.161025; SSC, P = 0.0017). Strikingly, a very different

pattern was observed for the Salmon module: the strongest

association, in both AGP and SSC, was with the strictest threshold

of PT,0.1 (AGP, P = 4.061025; SSC, P = 0.0040).

The Salmon module, which is one of the enriched modules for

ASD risk variants, includes genes that are known to be expressed

in both the developing and the adult brain. This raises the question

of whether this module represents pathways that are mainly

involved in neuronal plasticity in the adult brain, or whether it

represents genes that operate mainly in the developing brain. To

address this question we examined gene expression profiles of

brain samples from different developmental stages, using data

from the BrainSpan database. For each of the neuronal modules

we calculated the average expression for the 50 most connected

genes across different brain areas, and plotted this as a function of

developmental stages (Figure 5). In all three neuronal modules

there was a relatively low expression during fetal brain

development that increased with fetal age. In the Salmon module

the highly connected genes showed the highest expression during

infancy (Figure 5A). In contrast, in the Grey60 module, which

represents genes expressing in cortical interneurons, there was a

continuous increase into adulthood (Figure 5B). The most

connected genes in the Lightgreen module had, on average, a

relatively stable expression from childhood to adulthood

(Figure 5C). A flat temporal pattern was observed for the entire

dataset of genes (Figure 5D).

Discussion

We constructed a gene co-expression network based on

comprehensive expression profiling of the human brain. The

network was based on the variation in expression between

different brain regions. Similar to the findings of a previous study

Common and Rare Variants in Autism
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[19], modules in the network corresponded to specific cell types.

The vastness of the data allowed us to detail various cell-types, and

even, in the case of neurons and oligodendrocytes, to identify

modules corresponding to sub-populations of cells. Furthermore,

functional annotation of the modules allowed us to characterize

genes related to specific cellular processes and molecular functions

in the brain, which in many cases (but not all) are also related to

specific cell populations. These modules, and the hierarchy of the

genes within them (especially the ‘‘hub’’ genes), can be used to

predict the function of yet uncharacterized genes and learn about

new biological phenomena. An intriguing example is the observed

coupling between two sub-networks within the Yellow module.

One sub-network corresponds to genes involved in protein

translation and the other to microglia function and regulation.

This module’s eigengene can be used to estimate the relative

distribution of microglia in the brain. Another example is the

identification of three separate neuronal modules, suggesting that

the neurons in the brain could be roughly divided into three main

types based on their gene expression profiles. One module

corresponds to fast-spiking Parvalbumin-expressing interneurons.

These interneurons have been shown to be of importance in the

generation of gamma-oscillations [58], which are required for

speech perception and production [59,60], consistent with the

strong signal of the module eigengene in the temporal cortex. The

observed increase in the expression of the genes in this module

with age is consistent with previous reports in human and rats

[61,62]. The second module is involved in sensory perception.

Accordingly, it is highly expressed in the visual and somatosensory

cortices and enriched with synaptic genes. The third module

includes genes implicated in neuronal plasticity, and is highly

expressed in brain areas responsible for learning and memory.

Similarly, we identified two modules that are enriched for genes

up-regulated in oligodendrocytes, the Blue and Yellowgreen

modules. The Yellowgreen module was also found to be enriched

for genes involved in mitosis and the cell cycle. We suggest that the

Blue module may represent mature oligodendrocytes, whereas the

Yellowgreen module might represent immature dividing cells.

An important route in utilizing this network is as a framework to

explore the functional aspects of genetic variations in brain related

phenotypes. Because the network is based on measurements from

control individuals alone, it can only shed light on diseases where

specific aspects of brain functionality are involved. Our focus in

this study was ASD, as this is a heterogeneous syndrome with a

diverse genetic contribution. Although the genetic architecture of

ASD is still under debate, we found enrichment of genes affected

by both common and rare variants within specific neuronal

modules. The enrichment of genes affected by common variants

was replicated in two additional samples. Furthermore, we found a

Figure 4. Contribution to ASD risk of common variation in the neuronal sub-networks. Genetic risk scores were calculated for each
individual in the AGP and SSC cohorts, based on the genotypes of 79,079 tag SNPs and the association signal in these SNPs in the AGRE cohort. These
scores were used to predict ASD status in a logistic regression model. To test the Lightgreen and Salmon modules, the analysis was limited to tag
SNPs residing in genes in these modules. In each module and cohort, different series denote different thresholds of P-values, from PT,0.1 to PT,0.5.
doi:10.1371/journal.pgen.1002556.g004
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genetic risk score based on the two neuronal modules to be

significantly associated with ASD status in the two target samples.

The replication was evident despite the fact that the discovery

sample consists mainly of multiplex families and the target samples

of only simplex families or a mix of both. GWAS for ASD have

had limited success so far; however, our study suggests a

polygeneic component of ASD risk that is shared by multiplex

and simplex families. This implies that a GWAS with larger

samples should further contribute to the identification of ASD

susceptibility genes. The effect of multiple common variants with

very low effect size perturbs neuronal sub-networks, which are also

affected by rare variants. With this in mind, it is tempting to

speculate that both common and rare variants contribute to

perturbations of the same neuronal pathways, which in turn lead

to ASD.

Unlike genome-wide studies of SNPs and CNVs that aim to

identify specific genes associated with ASD, the approach used

here seeks to identify sub-networks that have a causal relationship

with ASD. Nevertheless, by integrating the network and the

GWAS data, we were able to elucidate genes within the modules

that are more likely to be responsible for the observed enrichment,

and are thus likelier candidates for association with ASD, needing

further validations. One of the sub-networks that are enriched for

rare and common variants (the Salmon module) represents genes

that are expressed in neurons, and are related to neuronal

plasticity and neurogenesis. Accordingly, the expression of genes in

Figure 5. Expression of neuronal modules during developmental stages. The temporal expression pattern is plotted for the modules
Salmon (A), Grey60 (B) and Lightgreen (C), along with the pattern of the entire gene set (D). For each module, the average normalized expression
across different brain regions for the 50 most connected genes is shown in different ages, overlaid by a smoothed signal (dashed line). pcw, post-
conceptional weeks; mos, months; yrs, years.
doi:10.1371/journal.pgen.1002556.g005
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this module was highest in the dentate gyrus, the CA1 field of the

hippocampus, and the dorsal striatum. By examining expression

levels during different developmental stages, we found that the

highest expression of the most connected genes in the Salmon

module was during infancy. The other associated module (Light-

green) is enriched with synaptic genes, specifically genes involved

in clathrin-dependent endocytosis, with the highest expression in

cortical areas involved in sensory processes. While this could

reflect the involvement of these regions with ASD etiology, it is

important to note that our findings could reflect the distribution of

specific cell types in the adult brain, and not necessarily the brain

areas affected in ASD.

The results of this study are in line with previous findings that

connected rare mutations in autism with neuronal activity-

dependent genes [63]. The hypothesis is that these genes are

highly expressed during critical periods of infancy and early

childhood as they are influenced by neural activity, which is

dependent on inputs from the environment [64]. Perturbation by

common and rare variants in these genes and pathways that are

involved in learning and memory of social cues during postnatal

stages may increase the risk of developing ASD. The potential

involvement of postnatal neuronal plasticity in ASD gives hope

that these pathways may be amenable to treatment long after

symptom onset, as has been suggested by animal studies on various

neurodevelopmental syndromes [65,66].

In summary, we constructed a gene network based on

comprehensive expression profiling of the human brain. This

network can be used as a framework to study multiple questions

including ones related to disease mechanisms, but also to normal

functions of genes in the brain. It could also be integrated with

other functional assays of the brain or other datasets. In our

current study we focused on ASD as a case study. We integrated

the gene co-expression network with genetic variations associated

with ASD. The results support the notion that common and rare

variants contribute to ASD by perturbation of common neuronal

networks. Further integration of genetic and molecular data with

the network has the potential to reveal a more detailed picture of

the particular molecular features depicted in the network that

contribute to ASD. Such knowledge is essential, first for providing

insights into the molecular functionality related to the etiology of

ASD, and also for the development of diagnostic tools and

effective therapies.

Materials and Methods

Dataset summary
Microarray data were acquired from the Allen Brain Atlas

(http://human.brain-map.org/well_data_files), and included a

total of 1340 microarray profiles from donors H0351.2001 and

H0351.2002, encompassing the different regions of the human

brain. Donors were 24 and 39 years old, respectively, with no

known psychopathologies. For donor H0351.2001 a total of 921

microarray profiles were available, and for H0351.2002 a total of

419 microarray profiles were available. A detailed description of

the donor individuals, including available medical profile and post-

mortem analyses performed is available at the following link:

http://help.brain-map.org/download/attachments/2818165/Case

Qual_and_DonorProfiles_WhitePaper.pdf. A detailed description of

the regions measured by microarray in each donor is available in

Table S9.

WGCNA network
Statistical analysis was done using the R project for statistical

computing (http://www.r-project.org). Network construction de-

ployed the WGCNA R-package [67], and followed closely the

tutorials available on the authors’ website. First, the correlation

between both individuals was tested by correlating first the mean

rank of the expression values in each gene, and then by correlating

the mean connectivity values in each gene [68]. For genes with at

least 3 available probes, the connectivity for each of the probes was

calculated, and the probe with the highest connectivity was chosen

for the network analysis. For genes with 2 probes, the one with the

highest mean was chosen. Probes not corresponding to refSeq

genes were removed, leaving a total of 16,298 probes used in the

network. The network was assembled following previously

published parameters [69]. An adjacency matrix was calculated

by raising the correlation matrix by a power of 6 (determined to be

optimal for scale free topology in our dataset), and a TOM matrix

was generated [20]. To determine the modules, hierarchical

clustering was performed, and the tree was cut using the

cutreeHybrid function in the WGCNA R package, with the

minimum module size set to 30 genes, and parameter deepSplit set

to 2 [67]. The resultant modules were merged using the

mergeCloseModules function with cutHeight set to 0.3. The

module eigengenes were derived by taking the 1st principal

component in a PCA analysis for the expression values in each

module. To visualize the modules, the 150 strongest connections

were drawn in the Cytoscape software [23]. For presentation

purposes, the nodes were ordered based on their degree of

connectivity, and their number was restricted to 50 nodes in each

module.

Enrichment for neural cell types
The enrichment analysis was based on a dataset of genes

enriched in mouse neurons, oligodendrocytes and astrocytes [21].

First, the number cell-type enriched genes in each module (Nen
m )

was calculated, as well as the total number of cell-type enriched

genes (Nen) appearing in the entire network. Subsequently, a

Relative Risk (RR) measure was calculated for each module and

for each cell type, RR~
Nen

m

� �
Nmð Þ

�
Nen{Nen

m

� �
N{Nmð Þ , with Nm as the

number of genes in each module, and N the total number of genes

in the network. P-values were obtained by permutation testing,

whereby a module of the same size was randomly selected and the

RR calculated. Standard error was calculated for each module

using bootstrap analysis. To determine whether the observed

overall enrichment was specific to the more up-regulated genes in

the cell types, the distribution of rank fold-change for the cell-type

enriched genes in each module was plotted. The correlation

between the median of the bins in the histogram and the number

of genes in the bins was tested. A strong negative correlation

indicates a substantial enrichment of the higher ranked cell type

specific genes.

Gene ontology (GO) enrichment analysis
Lists of the genes in each module were tested with the DAVID

bioinformatics tool [70]. For background, the complete list of the

genes in the network was used. For the module red, due to its size,

the 3000 genes with the highest correlation with the module

eigengene (see above) and the 3000 genes with the lowest

correlation (most negative) with the module eigengene were used

separately for enrichment testing.

Rare mutation and copy number variation (CNV) analysis
A list of autism susceptibility genes was compiled using the

SFARI gene database (https://sfari.org/sfari-gene), downloaded

on the 23/6/2011. The list was restricted to genes with reported

rare mutations in autism. Fisher’s exact test was used to test the
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distribution of ASD genes within the modules with 10,000

permutations. The number of risk genes with rare variants (from

the SFARI Gene) in each module (Nsf
m ), and the total number of

risk genes in the network (Nsf ), were used to calculate the

RR, similar to the method described above: RR~
Nsf

m

� �
Nmð Þ

�
Nsf {Nsf

m

� �
N{Nmð Þ . For the CNV analysis, gene length was

used instead of gene count, to correct for biases arising from

differences in gene lengths between the modules. For each module,

the total length in base pairs covered by CNV (lcn
m )and the total

length of the module (lm), were used along with the total length

covered by CNV (lcn) and the total length of the genes in the

network (l), in the following formula: RR~
lcn
m

� �
lmð Þ

�
lcn{lcn

m

� �
l{lmð Þ .

Enrichment for low GWAS p-values
Testing for the enrichment of low GWAS P-values was

performed using the discovery cohort of a previously published

GWAS [6], which included 943 ASDs families. The analysis

incorporated a previously published method [71], in a manner

previously described [20]. Briefly, the minimum P-value for each

gene was used in an enrichment score similar to the Kolmogorov-

Smirnov statistic [71]. Gene boundaries included the 20 kb

upstream and 10 kb downstream of each gene. To arrive at a

P-value corrected for the size of the genes, the gene labels

were permuted. Permutations were run until either reaching

20 instances of the higher enrichment score, or 100,000

permutations.

For each of the three neuronal modules found to be enriched for

rare and common variations in ASD, a list of genes that

contributed positively to the enrichment score of the module was

obtained. As the enrichment for low GWAS p-values was tested

using a running sum statistic over a sorted gene list, all genes above

the point where the statistic reached the maximum were taken.

Gene-wide P-values were determined by taking the SNP with the

minimum P-value in each gene and correcting for the number of

SNPs in the gene using a Bonferroni correction.

Replication of enrichment for low GWAS p-values in
additional samples

All GWAS analyses were performed using the PLINK software

by Shaun Purcell [72]. SNP genotyping data was acquired from

the Simons Simplex Collection (SSC) and the Autism Genome

Project (AGP). The SSC cohort included 734 nuclear families with

an autistic proband and an unaffected sibling, along with two

parents, genotyped using the Illumina 1M platform. The AGP

cohort included 1369 nuclear families with an autistic proband

and two parents, genotyped using the Illumina 1M platform. To

determine divergent ancestry, each sample separately was

combined with data from The HapMap Phase III, following a

previously published procedure [73]. Multidimensional scaling

analysis to four dimensions was then performed in PLINK,

followed by clustering to four groups using the R Package Mclust

[74]. After removing individuals who did not cluster with the

Hapmap CEU cohort, 588 families remained in the SSC cohort,

and 1165 families remained in the AGP cohort. On these, TDT

was performed, limiting the analysis to SNPs with a minor allele

frequency of over 10%, in Hardy-Weinberg Equilibrium

(P.0.001 in an exact test), with more than 90% genotyping rate,

and with less than 10% rate of mendelian errors. This left 788010

SNPs in the SSC and 668221 in the AGP. Families with 5%

mendelian errors were set to be removed, but none crossed that

threshold. Q-Q plots were generated by plotting the observed

2log10P against the expected distribution, and visualized using a

function available online. (http://gettinggeneticsdone.blogspot.

com/2011/04/annotated-manhattan-plots-and-qq-plots.html).

Estimation of the contribution of common variation to
Autism

To estimate the contribution of common variation to autism, we

followed a previously published paradigm [57]. First, a list of tag

SNPs was compiled wherein no two SNPs had an r2.0.25 in a

combined SSC and AGP sample. For these SNPs, the z-score of

the reference allele for association in the AGRE cohort was used to

calculate a score in Plink for each individual, which was defined as

the sum across all SNPs of the number of reference allele

multiplied by the z-score. The predictive value of the score was

tested by fitting a logistic regression model with ASD status as the

explained variable and individual score as the predictor, and

calculating both a Wald’s test p-value and a Nagelkerke’s pseudo-

r2. To test the Salmon and Lightgreen modules, the list of tag

SNPs was further pruned for SNPs in genes in these modules, and

the same analysis was performed.

Analysis of gene expression during brain development
Gene expression microarray profiles of the brain from

individuals of different ages were retrieved from the BrainSpan

database (http://developinghumanbrain.org/). The data included

492 microarray measurements from a total of 35 individuals of 28

different ages, ranging from 8 weeks post-conception to 40 years of

age (full sample information is available on the BrainSpan

website). We first accounted for global differences between the

different array samples and between the different genes. For each

measurement (a) of a gene (i) in each array (j), the following

compound z-score was calculated:

ai,j{�aaj

Sj
{�aai

Si

. As several array

measurements from different brain regions existed for each age,

the mean normalized score was used in the final analysis. For each

module tested, the mean score of the 50 genes with the most

connections out of the top 150 connections was plotted. A smoothed

signal was calculated using the cubic smoothing spline algorithm

implemented in the R function smooth.spline, using default parameters.

Supporting Information

Figure S1 High correlation in trends of (A) expression and (B)

connectivity between the two individuals (9861, 10021). The rank

of the mean expression (A) and connectivity (B) were calculated for

each gene and each individual. (A) Ranked gene expression values

in individual #9861 as a function of the values in individual

#10021 (each point is a different gene). (B) Ranked connectivity

values for each gene in individual #9861 as a function of the value

in individual #10021.

(PDF)

Figure S2 Expression patterns of the modules eigengene across

brain regions. For each module in the network, the level of the

module eigengene is shown for 100 representative regions. The

100 regions were chosen using the following algorithm: first, the

region showing the highest standard deviation was chosen, and

then the 99 additional regions were chosen by taking recursively

the region showing the lowest r2 with the previous ones.

(PDF)

Figure S3 Enrichment for specific cell types in the different

modules. Histogram of the rank of enrichment score for genes

found to be enriched in (A) neurons, (B) astrocytes, and (C)

oligodendrocytes is plotted for each module. Higher density

towards the lower end of the spectrum denotes enrichment for the
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higher ranked cell-type genes. Pearson correlations along with P-

values are listed below each plot. (A) The Salmon and Lightgreen

modules show highly significant enrichment for the higher ranking

of neuronal specific genes. (B) The Magenta module shows highly

significant enrichment for the higher ranking astrocyte specific

genes. (C) The Blue module shows highly significant enrichment

for the high ranking oligodendrocyte specific genes.

(PDF)

Figure S4 Top connections in the WGCNA modules. The top

150 connections in each module are visualized using the

Cytoscape Software Package. Nodes are ordered and sized

according to their degree.

(PDF)

Figure S5 Quality control measures for GWAS. MDS clustering

(A) and Q-Q (B) plots are shown for the AGP (left) and SSC (right)

cohorts. (A) An MDS plot was generated incorporating samples

from the HapMap Project Phase III. On this, clustering was

performed using the Mclust R package. Samples (shown in gray)

which did not cluster with the HapMap Caucasian (CEU) cohort

(shown in turquoise) were removed from analysis. Han Chinese

and Japanese samples are in purple, and Yorubans are in yellow.

(B) Q-Q plot was generated by plotting the observed 2log10P

against the expected under a uniform P-value distribution.

(PDF)

Table S1 List of genes in the WGCNA network, their module

affiliation and their degree of membership to each module.

(CSV)

Table S2 The gene expression profile of each module,

represented by the module eigengene, is shown for different brain

regions and samples.

(XLSX)

Table S3 Overlap of the gene co-expression network results with

a previously published network.

(XLSX)

Table S4 Enrichment of gene ontology (GO) categories in the

different modules.

(XLSX)

Table S5 For each module, a list of the top 10 brain regions with

highest level of expression based on the module eigengene.

(XLSX)

Table S6 Top GWAS association signals in the SSC sample.

(XLSX)

Table S7 Replication attempts of published GWAS results in the

SSC and AGP samples.

(XLSX)

Table S8 A list of candidate genes with gene-wide P-

value,0.05, which contributed to the enrichment of low GWAS

p-values in the Lightgreen and Salmon modules.

(XLSX)

Table S9 A list of brain regions with gene expression microarray

used to construct the gene co-expression network.

(XLSX)
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